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Abstract—Data visualization is invaluable for explaining the
significance of data to people who are visually oriented. The
central task of automatic data visualization is, given a dataset,
to visualize its compelling stories by transforming the data (e.g.,
selecting attributes, grouping and binning values) and deciding
the right type of visualization (e.g., bar or line charts).

We present DEEPEYE, a novel system for automatic data
visualization that tackles three problems: (1) Visualization
recognition: given a visualization, is it “good” or “bad”?
(2) Visualization ranking: given two visualizations, which one
is “better”? And (3) Visualization selection: given a dataset,
how to find top-k visualizations? DEEPEYE addresses (1) by
training a binary classifier to decide whether a particular
visualization is good or bad. It solves (2) from two perspectives:
(i) Machine learning: it uses a supervised learning-to-rank
model to rank visualizations; and (ii) Expert rules: it relies
on experts’ knowledge to specify partial orders as rules.
Moreover, a “boring” dataset may become interesting after
data transformations (e.g., binning and grouping), which forms
a large search space. We also discuss optimizations to efficiently
compute top-k visualizations, for approaching (3). Extensive
experiments verify the effectiveness of DEEPEYE.

I. INTRODUCTION

Nowadays, the ability to create good visualizations has

shifted from a nice-to-have skill to a must-have skill for all

data analysts. Consequently, this high demand has nourished

a remarkable series of empirical successes both in industry

(e.g., Tableau and Qlik), and in academia (e.g., DeVIL [1],

ZQL [2], SeeDB [3], and zenvisage [4]).

The current data visualization tools have allowed users

to create good visualizations, only if the users know their

data well. Ideally, the users need tools to automatically

recommend visualizations, so they can simply pick the ones

they like. This is hard, if not impossible, since among

numerous issues, no consensus has emerged to quantify the

goodness of a visualization that captures human perception.

Technically speaking, “interesting” charts can be defined

from three angles: (1) Deviation-based: a chart that is dra-

matically different from the other charts (e.g., SeeDB [5]);

(2) Similarity-based: charts that show similar trends w.r.t. a

given chart (e.g., zenvisage [4]); and (3) Perception-based:

charts that can tell compelling stories, from understanding

the data, without being compared with other references.

“If I had an hour to solve a problem I’d spend 55 minutes
thinking about the problem and 5 minutes thinking about solu-
tions.”

– Albert Einstein

A.
scheduled

B.
carrier

C. destination
city name

D. departure
delay (min)

E. arrival
delay (min)

F.
passengers

01-Jan 00:05 UA New York -4 1 193
01-Jan 04:00 AA Los Angeles 0 -2 204
01-Jan 06:13 MQ San Francisco 7 -11 96
01-Jan 07:33 OO Atlanta 11 -2 112

· · · · · · · · · · · · · · · · · ·
Table I

AN EXCERPT OF FLIGHT DELAY STATISTICS

Although (1) and (2) can be quantified formally, by statis-

tical deviations and correlations, respectively, our 55 minutes

thought is to study (3) despite the hardness of quantifying

human perception, because one fundamental request from

users is just to find eye-catching and informative charts. The

bad news is that users have poor choices for (3).

Example 1: Consider a real-world table about flight delay
statistics of Chicago O’Hare International (Jan – Dec,
2015), with an excerpt in Table I (https://www.bts.gov).

Naturally, the Bureau of Transportation Statistics wants to

visualize some valuable insights/stories of the data.

Figure 1 shows sample visualizations DEEPEYE considers

for the entire table. Some are from real use cases.

(i) Figure 1(a) is a scatter plot, with x-axis: D.departure
delay, y-axis: E.arrival delay, and plots grouped

(and colored) by “ B.carrier”. It shows clearly the arrival

delays w.r.t. departure delays for different carriers, e.g., the

carrier OO is bad due to its long departure and arrival delays.

(ii) Figure 1(b) is a stacked bar chart, with x-axis:

A.scheduled binned by month, y-axis: the aggregated

number of E.passengers in each month that is further or

stacked by C.destination city. It shows the number

of passengers travelled to where and when.

(iii) Figure 1(c) is a line chart, with x-axis: A.scheduled
binned by hour (i.e., the rows with the same hour are in

the same bucket), y-axis: the average of D.departure
delay. It shows when is likely to have more departure

delays, e.g., it has long delays in late afternoon.

(iv) Figure 1(d) is a line chart, with x-axis: A.scheduled
binned by date, y-axis: the average of D.departure
delay. It shows the range of delays, no trend. �

We have conducted a user study with researchers with

CS and Visualization background. They all agree that Fig-

ures 1(a)–1(c) are good, but Figure 1(d) is bad because it

does not follow any distribution and cannot tell anything.

1Guoliang Li is the corresponding author.
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VISUALIZE TYPE (∈ {bar, pie, line, scatter})
SELECT X ′, Y ′ (X ′ ∈ {X, BIN(X)}, Y ′ ∈ {Y, AGG(Y )})
FROM D
TRANSFORM X (using an operator ∈ {BIN, GROUP})
ORDER BY X ′, Y ′

Figure 2. Visualization language (two columns)

D

X Y

X Y

G

G GROUP BY B BINNING NO TRANSFORM

S SUM A AVGC COUNT

B S A C

O ORDER BY

X Y

O O

BAR PIE SCATTER

FROM

SELECT

TRANSFORM

ORDER BY

VISUALIZE LINE

Figure 3. Search space for two columns

as shown in Figure 2. Each query contains three mandatory

clauses (VISUALIZE, SELECT, and FROM in bold) and

two optional clauses (TRANSFORM and ORDER BY in

italic). They are further explained below.

� VISUALIZE: specifies the visualization type

� SELECT: extracts the selected columns

• X ′/Y ′ relates to X/Y : X ′ is either X or binning values,

e.g., by hour; Y ′ is either Y or the aggregation values

(e.g., AGG={SUM, AVG, CNT}) after transforming X

� FROM: the source table

� TRANSFORM: transforms the selected columns

• Binning

– BINX BY {MINUTE, HOUR, DAY, WEEK, MONTH, QUARTER,
YEAR}.

– BIN X INTO N , where N is the targeted #-bins.

– BIN X BY UDF(X), where UDF is a user-defined

function, e.g., splitting X by given values (e.g., 0).

• Grouping: GROUP BY X

� ORDER BY: sorts the selected column, X ′ or Y ′

Example 2: One sample query Q1 is given below, which is

used to visualize Figure 1(c). �

Q1 : VISUALIZE line
SELECT A.scheduled,AVG(D.departure

delay)
FROM TABLE I
BIN A.scheduled BY HOUR
ORDER BY A.scheduled

Each query Q over D, denoted by Q(D), will produce a

chart, which is also called a visualization.

Search Space. Given a dataset D, there exist multiple

visualizations. All possible visualizations form our search

space, which is shown in Figure 3 for two columns.

� SELECT can take any ordered column pairs (i.e., XY
and Y X are different), which gives m× (m− 1).

� TRANSFORM can either group by X , bin X (we have 9

cases, e.g., by minute, hour, day, week, month, quarter, year,

default buckets and UDF), or do nothing; and aggregate Y
using different operations. Thus there are (1+9+1)×4 = 44
cases for each column pair.

� ORDER BY can order either column X ′, column Y ′, or

neither: these give 3 possibilities. Note that we cannot sort

both columns at the same time.

Together with the four visualization types, the number of

all possible visualizations for two columns is: m × (m −
1)× 44× 4× 3 = 528 m(m− 1), which is fairly large for

wide tables (i.e., the number of columns m is large).

Remark. As surveyed by [6], real users strongly prefer bar,

line, and pie charts. In particular, the percentages of bar, line

and pie charts are 34%, 23%, and 13% respectively; and the

total percentage of the three types is around 70%. Thus this

work focuses on these chart types and leaves supporting

other chart types as a future work.

Extensions for One Column and Multiple Columns. Our

techniques can be easily extended to support one column

and multiple columns. For one column, we can do group/bin

on the column. In this case, CNT can be applied for the data

falling into the same group/bin. So there are (1+9+1)×2 =
22 cases for transformation. Also, ORDER BY can work

either on X ′, on Y ′, or does not sort any column. Hence,

the search space for one column is m×22×4×3 = 264 m.

For multiple columns, there are two cases. (i) There are

one column X on x-axis, and multiple columns Y1, · · · , Yz

on y-axis (2 ≤ z ≤ m − 1). The query aims to compare

the Yi columns for 1 ≤ i ≤ z. There are m cases for x-

axis, and
∑m−1

i=2

(
i
m

)
cases for y-axis. So the search space

for this case is m × (1 + 9 + 1) ×∑m−1
i=2 4i × (

i
m

) × 4 ×
(1 + i+1) = 44m(i+2)

∑m−1
i=2 4i

(
i
m

)
. (ii) There are three

columns X , Y and Z.We first group the data by X , and for

each group, do group/bin on Y , which is used for the x-axis.

We then calculate SUM, AVG, CNT of the Z data that falls in

the same group/bin as the y-axis. There are m3 cases for

column selection. For each selection, there are 44 cases for

transformation of Y and Z. Also, we can sort the data by

X ′, Y ′, Z ′, or does not sort any column. Thus the search

space is m3 × 44× 4× 4 = 704m3.

Such a large search space calls for a system, such as

DEEPEYE, that can navigate this search space and automat-

ically select visualizations.

C. An Overview of DEEPEYE

An overview of DEEPEYE is given in Figure 4, which

consists of an offline component and an online component.
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(ii) Bar Chart. The significance of bar chart is similar to

the pie chart and the difference is that bar charts can tolerate

large |d(X)| (e.g., >20) [13] and has no requirement that Y
values have diverse values, and compute the score as below.

M(v) =

⎧⎪⎨
⎪⎩

0 |d(X)| = 1

1 2 ≤ |d(X)| ≤ 20
20

|d(X)| |d(X)| > 20

(2)

(iii) Scatter Chart. We visualize scatter chart only if X,Y
are highly correlated. Thus we can set the value as c(X,Y ).

M(v) = c(X,Y ) (3)

(iv) Line Chart. We visualize line charts if X is temporal

or numerical columns. We want to see the trend of the Y
values. Thus we use the trend distribution to

M(v) = Trend(Y ) (4)

where Trend(Y ) = 1 if Y follows a distribution, e.g.,

linear distribution, power low distribution, log distribution

or exponential distribution; otherwise, Trend(Y ) = 0.

Normalized Significance. Since it is hard to compare the

significance of different charts, we normalize the signifi-

cance for each chart and compute the score as below.

M(v) =
M(v)

maxM
(5)

where maxM is the maximal score among all the nodes with

the same chart with v.

Factor 2: The quality of transformations Q(v). If the

transformed data has similar cardinality with the original

data, then the transformation is bad. Thus we use the ratio

of the cardinality of the transformed data to the cardinality

of the original data to evaluate the quality, i.e.,
|X′|
|X| , and the

smaller the better. Thus we compute the value as:

Q(v) = 1 − |X ′|
|X| (6)

Factor 3: The importance of columns W(v). We first

define the importance of a column X,W(X), which is the

ratio of the number of valid charts (those candidate charts)

containing column X to the number of valid charts. Clearly,

the more important a column is, the better to visualize the

chart with the column. Thus we compute the node weight

by summing the weight of all columns in the node.

W(v) =
∑
X∈v

W(X) (7)

We normalize W(v) into [0, 1] as below.

W(v) =
W(v)

maxW
(8)

where maxW is the maximal W(v) among all nodes.
Example 3: For the data in Table 1, we get 44 valid charts

after visualization recognition. There are 27 valid charts

containing column scheduled, and 12 valid charts contain

column departure delay. So the W(v) of visualization node

Figure 1(c) is 27
44 + 12

44 = 0.89. �

Given two nodes u, v, if u is better than v on every

factor, i.e., M(u) ≥ M(v), Q(u) ≥ Q(v), W(u) ≥ W(v),
then intuitively, u should be better than v. Based on this

observation, we define a partial order.

Definition 2: [Partial Order] A visualization node u is better

than a node v, denoted by u � v, if M(u) ≥ M(v), Q(u) ≥
Q(v), W(u) ≥ W(v). Moreover, u is strictly better than v,

denoted by u 	 v, if any of the above “≥” is “>”. �

Example 4: Figure 5 shows more visualizations of Flight

Delay. We take 2 visualizations in Figure 1 and 3 in Figure 5

to illustrate the definition of visualization node, which are

shown in Table II. Based on the visualization node in

Table II, we can calculate the M(v), Q(v) and W(v) and

get Figure 6, which shows the score of three factors that

influence partial order of the visualization nodes. And we

can get the partial order of the five visualization nodes by

Figure 6, which is shown in Figure 7. �

Note that, comparing different types of charts is a hard

problem. However, it is common in many search engines,

e.g., Google returns ranked results with a mixture of videos,

images and webpages. Consequently, any metric is heuristic.

As will be verified empirically in Section VI, our normalized

scores for different types of charts perform well in practice.

C. Partial Order-Based Visualization Selection

Given a table, we first enumerate all visualizations, and

use the trained binary classifier to decide the “valid” charts

(i.e., visualizations). Then for every pair of valid charts, we

check whether they conform to the partial order. If yes, we

add a directed edge. Thus we get a graph G(V,E), where V
is all valid visualization nodes and E indicates visualization

pairs that satisfy partial orders. The weight between u and

v, where u � v, is defined as:

M(u) −M(v) + Q(u) −Q(v) + W(u) −W(v)

3
(9)

We illustrate by examples about how to rank visualization

nodes based on the graph.

Example 5: In Figure 7, Figure 1(c) 	 Figure 1(d), so

there is a directed edge between visualization node 1(c) and

visualization node 1(d). And the weight is ((1.00 − 0) +
(0.99976 − 0.99633) + (0.89 − 0.52))/3 = 0.4578. Based

on the partial order in Figure 7, we can construct the graph

G using the visualization nodes Figure 1(c), Figure 1(d),

Figure 5(b), Figure 5(c) and Figure 5(d), which is shown in

Figure 8. �

Efficiently Construct the Graph G. It is expensive to

enumerate every node pair to add the edges. To address

this issue, we propose a quick-sort-based algorithm. Given a

node v, we partition other nodes into three parts: those better

than v (v≺), those worse than v (v�), and others (v �≺��).

Then for each node in u ∈ v≺ (or v�), we do not need to

compare with nodes in v� (or v≺). Thus we can prune many
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Fig M(v) Q(v) W(v)
1(c) 1.00 0.99976 0.89

1(d) 0 0.99633 0.52

5(b) 0.73 0.99995 0.36

5(c) 1.00 0.99995 0.36

5(d) 0.36 0.99998 0.55

Figure 6. Factors of visualization node

Fig 1(c) 1(d) 5(b) 5(c) 5(d)
1(c) � 	 none none none
1(d) none � none none none
5(b) none none � none none
5(c) none none 	 � none
5(d) none 	 none none �

Figure 7. Example of partial order

Fig.
1(c)

��

Fig.
5(d)

��

Fig.
5(c)

��

Fig.
1(d)

Fig.
5(b)

Figure 8. Example of rank visualization

visualization
node

attributes
data features type

Figure 1(c)

X = scheduled
Y = departure delay
X′ = BIN(scheduled) BY HOUR
Y ′ = AVG(departure delay)

|X| = |Y | = 99527
|X′| = |Y ′| = 24
d(X′) = 24
d(Y ′) = 18
c(X′, Y ′) = 0.43

line

Figure 1(d)

X = scheduled
Y = departure delay
X′ = BIN(scheduled) BY DAY
Y ′ = AVG(departure delay)

|X| = |Y | = 99527
|X′| = |Y ′| = 365
d(X′) = d(Y ′) = 365
c(X′, Y ′) = 0.14

line

Figure 5(b)

X = carrier
Y = passengers
X′ = GROUP(carrier)
Y ′ = AVG(passengers)

|X| = |Y | = 99527
|X′| = |Y ′| = 5
d(X′) = d(Y ′) = 5
c(X′, Y ′) = N

bar

Figure 5(c)

X = carrier
Y = passengers
X′ = GROUP(carrier)
Y ′ = SUM(passengers)

|X| = |Y | = 99527
|X′| = |Y ′| = 5
d(X′) = d(Y ′) = 5
c(X′, Y ′) = N

pie

Figure 5(d)

X = departure delay
Y = departure delay
X′ = BIN(departure delay)
Y ′ = CNT(departure delay)

|X| = |Y | = 99527
|X′| = |Y ′| = 2
d(X′) = d(Y ′) = 2
c(X′, Y ′) = N

pie

Table II
EXAMPLE OF VISUALIZATION NODE

unnecessary pairs. We can also utilize the range-tree-based

indexing method to efficiently construct the graph [15].

Rank Visualization Nodes based on G. A straightforward

method uses topology sorting to get an order of the nodes. It

first selects the node with the least number of in-edges, and

take it as the best node. Then it removes the node and selects

the next node with the least number of in-edges. Iteratively,

we can get an order.

However this method does not consider the weights on

the edges. To address this issue, we propose a weight-aware

approach. We first assign each node with a score S(v).
(1) If node v without out-edge, S(v) = 0.

(2) S(v) =
∑

(v,u)∈E(w(v, u)+S(u)), where w(v, u) is the

weight of edge (v, u).
Afterwards, we can select the k nodes with the largest

scores. Algorithm 1 shows the pseudo code.

Example 6: We use Figure 8 to illustrate this process.

Suppose we want to get the top-3 visualization nodes in

this case. Figure 8 shows the graph constructed by the

visualization nodes in Figure 7. The out-edges of 5(b) and

1(d) are 0, so the score of 5(b) and 1(d) are 0.

The weights of edges are: w(1(c), 1(d)) = 0.4578,

w(5(d), 1(d)) = 0.1312, w(5(c), 5(b)) = 0.09.

The scores of the visualization nodes are:

S(1(c)) = w(1(c), 1(d)) +S(1(d)) = 0.4578,

S(5(d))= w(5(d),1(d))+S(1(d)) = 0.1312,

S(5(c)) = w(5(c), 5(b)) +S(5(b)) = 0.09.

The top-3 visualization nodes are 1(c), 5(d), and 5(c). �

Algorithm 1: Partial Order-Based Selection

Input: V = {v1, v2, ..., vn};
Output: Top-k visualization nodes;
for each node v ∈ V do1

Compute M(v), Q(v), W (v);2
Partition V − {v} into three parts: V ≺, V �, V �≺��;3
Prune unnecessary pairs according to partitions;4

Construct G(V,E) based on range-tree-based indexing;5
ComputeNodeScore(v = root of V );6
return Top-k nodes v with largest weights S(v);7

Function ComputeNodeScore
Input : v
Output: S(v)
if outdegree(v) = 0 then1

return S(v) = 02

else3
for (v, u) ∈ E do4

ComputeNodeScore(u);5

return S(v) =
∑

(v,u)∈E(w(v, u) + S(u));6

D. Hybrid Ranking Method

Learning-to-rank works well when there are sufficient

good examples (i.e., supervised). Partial order works well

when the experts have enough expertise to specify domain

knowledge (i.e., unsupervised). We propose a hybrid method

HybridRank to linearly combine these two methods as

follows. Consider a visualization v. Suppose its ranking

position is lv by learning-to-rank and its ranking position

is pv by partial order. Then we assigns v with a score

of lv + αpv , where α is the preference weight of the two

methods which can be learned by some labelled data, and

rank the visualizations by the score.

V. OPTIMIZING PARTIAL ORDER-BASED APPROACH

A closer look at the process of visualization enumeration

(i.e., the search space) suggests that some visualizations

should not be considered at all – those visualizations that

human will never generate or consider, even if they have

unlimited budget (or time). In order to directly prune these

bad visualizations, we define rules to capture “meaningful”

operations (Section V-A). We then present algorithms that

utilize these rules to compute top-k visualizations (Sec-

tion V-B). We close this section by discussing how to

generate rules (Section V-C).

A. Decision Rules for Meaningful Visualizations
We are ready to present the rules that can (possibly)

generate meaningful visualizations from three perspectives:

(1) transformation rules: whether a grouping or binning
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operation is useful; (2) sorting rules: whether a column

should be sorted; and (3) visualization rules: whether a

certain type of visualization is right choice. These rules use

the features (or data representations) discussed in Section III.

1. Transformation Rules. We first consider two columns

X and Y , and the techniques can be easily extended to

support one column or more than 2 columns. Without loss

of generality, we assume that X is for x-axis and Y is for

y-axis. Next we discuss how to transform X,Y to X ′, Y ′,
by considering the two transformation operators (GROUP and

BIN). We categorize the rules as follows.

(I) X is categorial: we can only group X (cannot bin X).

After generating the groups, we apply aggregation functions

on Y for two cases. (i) If Y is numerical, we can apply

an operation in AGG = {AVG, SUM, CNT}. (ii) If Y is not

numerical, we can only apply CNT. Thus, we have two rules.

• T(X) = Cat,T(Y) = Num → GROUP(X), AGG(Y).

• T(X) = Cat,T(Y) �= Num → GROUP(X), CNT(Y).

(II) X is numerical: we can only bin X (cannot group

X). After generating the buckets, we can apply aggregation

functions on Y . (i) If Y is numerical, we can apply an

operation in AGG = {AVG, SUM, CNT}. (ii) If Y is not

numerical, we can only apply CNT. Thus we have two rules.

• T(X) = Num,T(Y) = Num → BIN(X), AGG(Y).

• T(X) = Num,T(Y) �= Num → BIN(X), CNT(Y).

(III) X is temporal: we can either group or bin X . After

generating the groups or buckets, we can apply aggregation

functions on Y . (i) If Y is numerical, we can apply an oper-

ation in AGG = {AVG, SUM, CNT}. (ii) If Y is not numerical,

we can only apply CNT. Thus we have the following rules.

• T(X) = Tem,T(Y) = Num → GROUP/BIN(X), AGG(Y).
• T(X) = Tem,T(Y) �= Num → GROUP/BIN(X), CNT(Y).

Example 7: Consider Table I. If X = carrier (cate-

gorial) and Y = passengers (numerical), we can apply

GROUP(carrier), AVG(passengers) and get Figure 5(b).

If X = scheduled (temporal) and Y = departure
delay (numerical), we can apply BIN(scheduled),

AVG(departure delay) and get Figure 1(c). �

2. Sorting Rules. Given two (transformed) columns, we

can sort either X or Y . Intuitively, we sort numerical and

temporal values in X but cannot sort categorical values. Note

we can sort numerical values in Y ; otherwise it does not

make sense. Thus we get the following rules.

• T(X) = Num/Tem → ORDER BY(X).

• T(Y ) = Num → ORDER BY(Y).

Example 8: Based on Figure 1(c), we can sort

scheduled (temporal column) and get a trend of

average departure delay, which shows average
departure delay fluctuates over time. It stands at the

first relative high point ∼11:00, after which it starts to

decline and rises again and reaches the peak ∼19:00. �

3. Visualization Rules. For Y , it can be a numerical column

but cannot be other types of columns.

(I) If X is categorical, Y is numerical, we can only draw

bar charts and pie charts.

(II) If X is numerical, Y is numerical, we can draw the line

charts and bar charts. Moreover, if X,Y have correlations,

we can also draw scatter charts.

(III) If X is temporal, Y is numerical, we draw line charts.

Thus we can get the following rules.

• T(X) = Cat,T(Y) = Num → bar/pie.

• T(X) = Num,T(Y) = Num → line/bar.

• T(X) = Num,T(Y) = Num, (X,Y ) correlated→scatter.

• T(X) = Tem,T(Y) = Num → line.

Example 9: Figure 5(b) is a meaningful bar chart, which

consists of categorical column carrier as X and numer-

ical column passengers as Y . �

B. Rule-based Visualization Selection

An Enumeration Algorithm. A straightforward algorithm

enumerates every column pairs. (We need to consider both

(X,Y ) and (Y,X).) For each pair (X,Y ), we enumerate

every transformation rule. If the rule can be applied, we

transform the data in the two columns into (X ′, Y ′). Then

we enumerate every sorting rule and transform it into

(X ′′, Y ′′). Next, we try different visualization rules and

draw the charts if the rule can be applied to (X ′′, Y ′′).
Based on these rules, we can get a set of visualization

candidates. Next we use them to construct a graph and

select top-k visualizations from the graph. However, this

algorithm is rather expensive as it requires to first enumerate

all candidates and then identify top-k ones from the graph.

Next we propose optimization techniques.

A Progressive Method. We propose a progressive method to

improve the performance of identifying top-k visualizations.

The basic idea is that we do not generate all the candidate

visualizations. Instead, we progressively generate the candi-

dates with the largest possibility to be in the top-k results.

Algorithm Overview. For each type of column, categorical,

temporal, numerical, we keep a list of charts w.r.t. the

column type, i.e., Lc, Lt, Lm. We progressively generate the

lists. For each list, we split it into different sublists based on

the columns, we use LX
c to denote the list of charts that take

the categorical column X as x-axis. We can similarly define

Lt, Ln for temporal and numerical columns. Then we build

a tree-like structure. The dummy root has three children Lc,

Lt, Lm. Each node Lc has several children, e.g., LX
c , for

each categorical column X in the table. Next we use the

tournament-like algorithm to select the best chart from leaf

to root. For leaf nodes, we generate the best visualization in

each leaf node w.r.t. the partial order. Then for each node

Lc, we select the best visualization from the visualizations

of its children. Similarly from the root, we can select the best
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visualization from its children. If the best chart is selected

from LX
c , we get the next best chart from the list and adjust

the tournament. After we get k charts, it terminates.

Computing the best chart from LX
c in the leaf node. For

each list LX
c , we can only generate the bar chart and pie

chart. We can get a list of charts based on each factor. Then

we get the best one from these lists.

Computing the best chart from LX
n in the leaf node. For

each list LX
n , we can only generate the line chart and bar

chart. We can get a list of charts based on each factor. Then

we get the best one from these lists.

Computing the best chart from LX
t in the leaf node. For

each list LX
t , we can only generate the scatter chart. We

can get a list of charts based on each factor. Then we get

the best one from these lists.

Computing the best chart from Lc/Lt/Lm. We just need to

select the best one from its children.

Computing the best chart from the root. We compare differ-

ent charts from its children and select the best one.

Based on the tournament we can generate the top-k charts

without generating all the candidate charts.

Optimizations. We propose several optimization techniques.

First, for each column X , when grouping and binning

the column, we compute the AGG values on other columns

together and avoid binning/grouping multiple times.

(1) For each categorical/temporal column, we group the

tuples in D and compute the CNT value; for each numerical

column, we compute the AVG and SUM values in each group.

Next we visualize the data based on the visualization rules.

(2) For each temporal column, we bin the tuples in D,

and compute the CNT value; for each numerical column,

we compute the AVG and SUM values in each bin. Next we

visualize the data based on the visualization rules.

(3) For each numerical column, we bin the tuples in D,

and compute the CNT value; for each numerical column, we

compute the AVG and SUM values in each group. Next we

visualize the data based on the visualization rules.

Second, we do not generate the groups of a column if there

have k charts in Lc better than any chart in this column.

Third, we postpone many operations after selecting the

top-k charts, e.g., sorting, AVG operations. Thus we avoid

many unnecessary operations that are not in top-k.

C. Rule Generation and Completeness

Below, we will discuss the “completeness” of rules intro-

duced in Section V-A, in terms of that they cover all cases

that a visualization can potentially be meaningful (or good).

Transformation Rule Generation and Completeness. For

transformation rule, we only need to consider categorical,

numerical, and temporal columns. For categorical column,

we can only apply group operations on it and apply aggrega-

tion on other columns. For numerical and temporal columns,

we can only apply bin operations on it and apply aggregation

#-tuples #-columns

Max Min Avg
Max Min Avg

Temporal/Categorical/Numerical/All
99527 3 3381 2/12/21/25 0/0/1/2 1/2/5/7

Table III
STATISTICS OF EXPERIMENTAL DATASETS

on other columns. We can see that our rules consider all the

possible cases and the transformation rules are complete.

Sorting Rule Generation and Completeness. It is trivial

to generate sorting rules because we can only sort the

numerical and temporal values on x-axis and numerical

values on y-axis. We can see that our rules consider all the

possible cases and the sorting rules are complete.

Visualization Rule Generation and Completeness. We

only need to consider categorical, numerical, and temporal

columns. We can only put the numerical columns on y-axis,

and put categorical, numerical, and temporal columns on x-

axis. For each case, there are four possible charts. Our rules

consider all cases and the visualization rules are complete.

VI. EXPERIMENTS

The key questions we answered in this evaluation are: (A)

How does DEEPEYE work for real cases? (B) How well

does DEEPEYE perform in visualization recognition? (C)

Whether the visualization selection of DEEPEYE can well

capture human perception? (D) How efficient is DEEPEYE?

Datasets. We have collected 42 real-world datasets from

various domain such as real estate, social study, and trans-

portation. Some statistics are given in Table III: the number

of tuples ranges from 3 to 99527, with an average 3381;

the number of columns is from 2 to 25; the statistics of #-

columns for temporal, categorical, numerical is also given.

Ground Truth. We have asked 100 students to label the

dataset. (1) For each dataset, we enumerated all the possible

candidate visualizations and asked them to label which

are good/bad. (2) For good visualizations, we asked them

to compare two visualizations which are better. Then we

merged the results to get a total order [16], [17]. We

got 2520/30892 annotated good/bad charts, and 285,236

comparisons for visualization pairs. Note that if a table has

k visualizations, there are k × (k − 1)/2 rankings for one

table.

Training. We selected 32 datasets as training datasets and

trained ML models based on the ground truth of 32 datasets.

We tested on other 10 datasets – this can help justify whether

the trained ML models can be generalized. These 10 tables

are given in Table IV, which are selected to cover different

domains, various number of tuples and columns. Note that

the last column, #-charts, refers to good visualizations. We

also conducted cross validation and got similar results.

Experimental Environment. All experiments were con-

ducted on a MacBook Pro with 8 GB 2133 MHz RAM and

2.9 GHz Intel Core i5 CPU, running OS X Version 10.12.3.
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No. name #-tuples #-columns #-charts
X1 Hollywood’s Stories 75 8 48
X2 Foreign Visitor Arrivals 172 4 10
X3 McDonald’s Menu 263 23 275
X4 Happiness Rank 316 12 123
X5 ZHVI Summary 1,749 13 36
X6 NFL Player Statistics 4,626 25 209
X7 Airbnb Summary 6,001 9 42
X8 Top Baby Names in US 22,037 6 17
X9 Adult 32,561 14 103
X10 FlyDelay 99,527 6 44

Table IV
10 TESTING DATASETS

No. name from
D1 Happy Countries http://www.kenflerlage.com/2016/08/

whats-happiest-country-in-world.html
D2 US Baby Names https://deepsense.io/us-baby-names-

data-visualization/
D3 Flight Statistics https://www.transtats.bts.gov/airports.

asp?pn=1
D4 TutorialOfUCB https://multimedia.journalism.

berkeley.edu/tutorials/
data-visualization-basics/

D5 CPI Statistics https://medium.com/towards-data-
science/data-visualization

D6 Healthcare https://getdataseed.com/demo/
D7 Services Statistics https://getdataseed.com/demo/
D8 PPI Statistics https://ppi.worldbank.org/

visualization/ppi.html
D9 Average Food Price http://data.stats.gov.cn/english/vchart.

htm

Table V
9 REAL USE CASES WITH DATA AND VISUALIZATIONS

A. Coverage in Real Use Cases

We used 9 real-world datasets in Table V (different from

the above training datasets) with both datasets and widely

used charts. The 32 training datasets are used for learning.

Figure 9 is a screenshot of the 1st page (i.e., top-6 results)

of running DEEPEYE on D3. This is the best case since all 4

visualizations used by the website are automatically discov-

ered by DEEPEYE in the first page. Note that traditionally,

this will take hours for experienced data analysts who know

the data very well to produce; now, you blink and it’s done.

Applying DEEPEYE for other datasets are shown in

Table VI. Take dataset D1 for instance, Table VI shows

that D1 has 5 practically used visualizations, which can be

covered by top-23 results from DEEPEYE.

We have two main research findings from this group

of experiment. (1) DEEPEYE can automatically discover

visualizations needed in practice to tell compelling stories,

which makes creating good visualizations a truly sexy task.

(2) Sometimes the k visualizations needed to cover real cases

is much larger than the #-real ones, e.g., it needs top-23

results to cover the 5 real cases. This is not bad at all since

(i) users just browse few pages to find the ones they need; (ii)

the other results not used by the real cases are not necessarily

bad ones, for many cases the users may like them if they
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Figure 9. Screenshot of DEEPEYE for Dataset D3 Flight Statistics

Vis top-k
D1 5 23

D2 5 11

D3 4 6

D4 4 9

D5 1 1

D6 2 3

D7 6 24

D8 9 32

D9 27 27
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Figure 10. Average effectiveness

Precision Recall F-measure
Bayes SVM DT Bayes SVM DT Bayes SVM DT

B 84.30 86.90 93.20 84.10 86.40 93.00 84.20 86.65 93.10
L 93.20 96.50 99.50 90.80 96.40 99.50 91.98 96.45 99.50
P 83.40 90.60 94.70 82.60 90.60 94.70 83.00 90.60 94.70
S 84.30 86.90 93.10 84.10 86.40 92.90 84.20 86.65 93.00

Table VII
AVERAGE EFFECTIVENESS (%): B(BAR), L(LINE), P(PIE), S(SCATTER)

Bar Line Pie Scatter
Bayes SVM DT Bayes SVM DT Bayes SVM DT Bayes SVM DT

X1 79 81 93 81 83 93 82 86 95 83 83 95
X2 82 91 98 85 90 99 84 90 98 83 90 98
X3 71 80 95 84 92 94 82 84 94 81 82 95
X4 72 82 94 84 91 93 82 87 95 82 84 95
X5 73 83 94 86 89 96 83 86 95 82 83 94
X6 73 80 95 86 87 95 84 84 94 82 83 96
X7 71 83 96 87 90 95 83 85 94 81 82 95
X8 70 81 95 89 86 96 82 84 95 81 83 94
X9 72 82 94 90 88 93 82 84 95 82 82 96
X10 71 81 97 81 86 97 83 83 96 83 84 96

Table VIII
F-MEASURE (%) FOR DIFFERENT TYPES OF CHARTS

have seen them.

B. Visualization Recognition

Our main purpose in this group of experiment is to test (1)

whether binary classifiers can well capture human perception

for visualization recognition; and (2) which ML model best

fits our studied problem?

We tested three popular ML models – Bayes, SVM and

decision tree (DT). We used precision, recall and F-measure

(i.e., the harmonic mean of precision and recall).

Figure 10 shows the average precision, recall and F-

measure values for the 10 datasets (X1–X10). This figure

clearly shows that decision tree is way better than SVM and

Bayes as binary classifiers for visualization recognition and
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Figure 11. Effectiveness study for visualization ranking & selection (x-axis: dataset; y-axis: NDCG)
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Figure 12. Efficiency

achieves averagely 95% F-measure – this justifies decision

tree as a good choice for visualization recognition problem.

The main reason is possibly because the visualization recog-

nition should follow the rules as discussed in Section V-A

and decision tree could capture these rules well.

Table VII breaks down Figure 10 to show the effectiveness

for bar (B), line (L), pie (P), and scatter (S) charts, which is

the average of the 10 tested datasets. It shows the consistent

story that decision tree outperforms SVM and Bayes behaves

the worst. Table VIII further verifies the above results by

showing individual cases for these 10 datasets, which also

confirms that decision tree works the best.

C. Visualization Selection

We used the normalized discounted cumulative gain

(NDCG) [18] as the measure of ranking quality, which

calculates the gain of a result based on its position in the

result list and normalizes the score to [0, 1] where 1 means

perfect top-k results. We compared the NDCG values of

partial order-based method and learning to rank for X1–X10.

Figure 11(a) reports the results. It shows clearly that

partial order is always better than learning to rank. The

maximal NDCG of partial order is 0.97, and minimal

NDCG of partial order is 0.81, while the maximal and

minimal NDCG of learning to rank are 0.85 and 0.52,

respectively. This is because the partial order ranked the

order based on expert rules which captures the ranking

features very well and learning to rank cannot learn these

rules. HybridRank outperforms learning-to-rank and partial

order. For example, the average NDCG of Hybrid is 0.94 and

outperforms learning-to-rank and partial order by 32.4% and

6.8%, respectively.

Figures 11(b), 11(c), 11(d) and 11(e) classify Figure 11(a)

into bar, line, pie and scatter charts, respectively. Not sur-

prisedly, they behave differently for various datasets. How-

ever, the general observation is that the partial order based

approach beats learning to rank for visualization selection.

D. Efficiency – Tell the stories of your data in seconds!

We have also tested the efficiency of DEEPEYE on

datasets X1–X10. Each dataset is associated with 4 bars

that measure the end-to-end running time from a given

dataset to visualization selection. The time of each bar

consists of two parts: (i) generate all candidate visualiza-

tion without/with (i.e., E/R) using our transformation/sort-

ing/visualization rules; and (ii) visualization selection using

learning to rank/partial order-based solutions. We annotate

the percentage (%) of these two parts in each bar, e.g., the

first bar means that it needs 550 ms, where visualization

enumeration(E) takes 20% time and visualization selection

using learning to rank(L) takes 80%.

Figure 12 tells us the followings: (1) using the rules

(Section V-A) can effectively reduce the running time, i.e.,

RL (resp. RP) runs always faster than EL (resp. EP) since it

avoids generating many bad visualizations, as expected; (2)

partial order-based approach runs faster than learning to rank

model, i.e., EP (resp. RP) runs always faster than EL (resp.

RL), because partial order can efficiently prune the bad ones

while learning to rank must evaluate every visualizations;

(3) DEEPEYE can run to complete in seconds for datasets

with reasonable size. Note that the performance will be

boosted by DBMSs (e.g., the database-based optimizations

in SeeDB [5] and DeVIL [1]) or MapReduce-like platforms

such as Spark and Flink since the task of visualization

selection is trivially parallelizable.

VII. RELATED WORK

Visualization Recommendation. There has been work on

recommending visualizations, such as SeeDB [3], Pro-

filer [19], and Voyager [20]. SeeDB [3] quantifies an “inter-

esting” visualization as the one that is largely deviated from

a user given reference, which is similar to find an outlier.

Profiler [19] is similar to SeeDB, which findsr anomalies as

candidate recommendations. Voyager [20] suggests visual-

izations based on statistical properties of all visualizations.
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Different from them that mainly use statistical properties

(e.g., outliers) for computing recommendations, DEEPEYE

tries to capture the human perception by understanding

existing examples using mature ML-based techniques.

Interactive Data Visualization Systems. DeVIL [1] em-

ploys a SQL-like language to support interactive visualiza-

tion. zenvisage [4] tries to find other interesting data when

the users provide their desired trends, patterns, or insights.

Lyra [21] is an interactive environment that enables custom

visualization design without writing any code.

DEEPEYE is an automatic visualization system, which is

orthogonal to, and can leverage interactive systems.

Data Visualization Languages. There have been several

work on defining visualization languages. ggplot [22] is a

programming interface for data visualization. The Logical

Visualization Plan (LVP) [23] is a nested list of clauses.

DeVIL [1] uses a SQL-like language. ZQL [4] borrows the

idea Query-by-Example (QBE) that has a tabular structure.

Vega (https://vega.github.io/vega/) is a visualization gram-

mar in a JSON format. VizQL [24], used by Tableau, is a

visual query language that translates drag-and-drop actions

into data queries and then expresses data visually.

Our proposed language is a subset, but shares many

features with the others. Our purpose to define a simple

language is just to make our discussion easier.

VIII. CONCLUSION AND FUTURE WORK

We have presented DEEPEYE, a novel automatic data

visualization system. We leveraged machine learning tech-

niques as black-boxes and expert specified rules, to solve

three challenging problems faced by DEEPEYE, namely,

visualization recognition, visualization ranking, and visual-

ization selection. We have shown promising results using

real-world data and use cases. One major future work is to

support keyword queries such that users specify their intent

in a natural way [25], [26].
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